
Interactive, Live Mashup Development through
UI-Oriented Computing

Anis Nouri and Florian Daniel

University of Trento
Via Sommarive 9, I-38123, Povo (TN), Italy

anis.nouri-1@studenti.unitn.it,daniel@disi.unitn.it

Abstract. This paper proposes to approach the problem of developing
mashups by exclusively focusing on the Surface Web, that is, the data and
functionality accessible through common Web pages. Typically, mashups
focus on the integration of resources accessible through the Deep Web,
such as data feeds, Web services and Web APIs, that do not have own
UIs (next to data extracted from Web pages). Yet, these resources can
be wrapped with ad-doc UIs, suitably instrumented, and made accessible
through the Surface Web. Doing so enables a UI-oriented computing
paradigm that allows developers to implement mashups interactively and
live inside their Web browser, without having to program any line of code.
The goal of this paper is to showcase UI-oriented computing in practice
and to demonstrate its feasibility and potential.

Keywords: UI-oriented computing, iAPIs, mashups, integration

1 Introduction and Goals

The most notable technologies today to publish and access data and functionality
over the Web are SOAP/WSDL Web services [2], RESTful Web services [6],
RSS/Atom feeds, and static XML/JSON/CSV resources. Alternatively, data
may be rendered in and scraped from HTML Web pages, for example, using
tools like Dapper (http://open.dapper.net) or similar that publish extracted
content again via any of the previous technologies. W3C widgets [3] or Java
portlets [1] are technologies for the reuse of small, full-fledged applications that
also provide for the reuse of user interfaces (UIs).

All these technologies (except the Web pages) are oriented toward program-
mers, and understanding the underlying abstractions and usage conventions re-
quires significant software development expertise. This makes data integration a
prerogative of skilled programmers, turns it into a complex and time-consuming
endeavor (even for small integration scenarios), and prevents less skilled users
from getting the best value out of the opportunities available on the Web.

UI-oriented computing (UIC [4]) takes a different perspective and starts from
the UIs of applications we all – programmers and users – are accustomed with
and that are free of developer-oriented abstractions. The research question UIC
poses is if and, if yes, which of the conventional Web engineering tasks can be

achieved if we start from the UIs of applications, instead of from their APIs or
services. The vision is to enable everybody to perform simple integration tasks
directly inside their Web browser, for example, the integration of data extracted
from different Web pages or the automation of repeated navigation actions.

In our prior work [5], we already investigated how to turn UIs into pro-
grammable artifacts and introduced the idea of interactive APIs (iAPIs), that
is, APIs users can interact with via their UIs. In [4], we then studied the specific
case of data integration and described an end-to-end solution for UI-oriented
computing consisting of an iAPI annotation format, a graphical editor for iAPI
manipulation and integration, and a suitable runtime environment.

The goal of this paper is to showcase a more extensive case study (the one
to be developed in the context of the Rapid Mashup Challenge) and to provide
insights into the practical aspects of UI-oriented computing with the current pro-
totype of our development and runtime environments. In particular, the goal is to
highlight the benefits to both common users (interactive, live development with-
out coding) and programmers (programmatic UIC via a dedicated JavaScript
library).

2 UI-Oriented Computing Approach

The idea of UIC is to propose a new kind of “abstraction”: no abstraction. The
intuition is to turn UI elements into interactive artifacts that, besides their pri-
mary purpose in the page (e.g., rendering data), also serve to access a set of
operations that can be performed on the artifacts (e.g., reusing data). Opera-
tions can be enacted either interactively, for example, by pointing and clicking
elements, choosing options, dragging and dropping them, and similar – all inter-
action modalities that are native to UIs – or programmatically.

The core ingredient, interactive APIs, come as a binomial of a microformat
for the annotation of HTML elements with data structures and operations and
a UIC engine able to interpret the annotations and to run UI-oriented data in-
tegrations. The engine is implemented as a browser extension. A dedicated iAPI
editor injects into the page graphical controls that allow the user to specify data
integration logics interactively. The UIC engine maps them to a set of iAPI-
specific JavaScript functions implementing the respective runtime support. The
library of JavaScript functions can also be programmed directly by programmers,
without the need for interacting with UI elements. To users, the UI elements act
as proxies toward the features of the library. A UI-oriented computing middle-
ware complements the library; both are part of the browser plug-in. It takes
care of setting up communications among integrated applications (e.g., to load
data dynamically from third-party pages) and of storing interactively defined
integration logics in the browser’s local storage. Programmers with access to the
source code of a page can inject their JavaScript code directly into it.

3 UI-Oriented Computing Infrastructure

Figure 1 shows the internal architecture of the current prototype, which comes
as a Google Chrome browser extension. It comes with two core elements: a
UIC engine for the execution of UI-oriented data integration logics and an
iAPI editor for visual, interactive development. The UIC engine is split into
two parts: The background script provides core middleware services, such as ex-
tension management (via its icon and pop-up menu), remote resource access,
data parsing, and local storage management. The content script implements the
iapi JavaScript library for programmatic UIC (the implementation is based on
http://toddmotto.com/mastering-the-module-pattern), injects JavaScript
code into the page under development, and provides for the rendering of data
(using the jQuery plug-in). Content and background script communicate via
Chrome system messages. The iAPI editor comes as JavaScript code that is in-
jected into the Web page under development. It parses the annotations of the
iAPIs inside the page, augments them accordingly with graphical controls, and
injects the event handlers necessary to intercept user interactions that can be
turned into JavaScript data integration logics (in turn, injected into the page by
the content script).

The Web

i

Browser window

UIC engine
(background script)

UIC engine
(content script)

Target page P2

<ul
class=
"iapi">
…

<table class="iapi">
…
</table>

Browser extension logo

Graphical iAPI controls

iAPI annotation

iAPI annotations

HTML
augmenter

Loader

HTML 5
messages

loads resources

injects content

Event
handlers

interprets annotations

HTML
augmenter

iapi
JS library

Local
storage

Extension
lifecyle

manager

Annotation parsers

iAPI parser

RSS parserh-card parser
JSON parser

injects controls

manages data

HTML
templ.
HTML
templ.
HTML
templ.

Storage manager

Chrome
messages

manages
icon

RSS

XML

iAPI editor
(injected script)

iAPI parser

react to user interactions

uses

JS
augmenter

injects JavaScript code

Fig. 1. Architecture of the UI-oriented computing environment as browser extension.

4 Preparation and Demonstration Checklist
Mashup'Features
Mashup.Type:
...User.Interface.(UI).mashups
...Hybrid.mashups
Component.Types:
...UI.components
Runtime.Location:
...Client@side.only
Integration.Logic:
...UI@based.integration
Instantiation.Lifecycle:
...Short@living

Mashup'Tool'Features
Targeted.End@User:
...Non.Programmers
...Expert.Programmers
Automation.Degree:
...Semi@automation
...Manual
Liveness.Level:
...Level.4.(Dynamic.Modification)
Interaction.Technique:
...WYSIWYG
...Programming.by.Demonstration
...Textual.DSL
Online.User.Community:
...None

Once the resources to be integrated in the context of
the Challenge are available, mashing them up with the
proposed UIC paradigm requires three steps:

1. Implementing suitable UIs for all resources. For
data and functionality to be extracted from Web
pages, the UI is already there. For data feeds, ser-
vices or APIs, this requires new simple Web front-
ends that provide access to the resources’ features,
e.g., tables visualizing data from feeds or forms al-
lowing users to operate a remote service or API.

2. Annotating all UIs for reuse. For existing Web pages
this requires injecting annotations into the markup
of the pages. Newly developed front-ends can di-
rectly be annotated in their source markup.

3. Integrating them inside the Web browser.

The first two points will be done as part of the prepa-
ration of the Challenge; the latter will be showcased
live during the challenge, first interactively inside the
Web browser (e.g., https://www.youtube.com/watch?
v=9CRKzToL7tc), then programmatically using the JS
library oriented toward programmers (e.g., https://

www.youtube.com/watch?v=h3C-YEMUxG0). The chal-
lenge will be to make available through the Surface Web
as many resources as possible and to understand which mashup scenarios suit
the envisioned UIC paradigm best.

The iAPI microformat is maintained via the W3C Interactive APIs Commu-
nity Group (http://www.w3.org/community/interative-apis), the browser
extension on https://github.com/floriandanielit/interactive-apis.

References

1. A. Abdelnur and S. Hepper. Java Portlet Specification, Version 1.0. Technical
Report JSR 168, Sun Microsystems, Inc., http://download.oracle.com/otndocs/
jcp/PORTLET_1.0-FR-SPEC-G-F/, October 2003.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Archi-
tectures, and Applications. Springer, 2003.

3. M. Caceres. Packaged web apps (widgets) - packaging and xml configuration (second
edition). W3C Recommendation, 2012.

4. F. Daniel. Live, Personal Data Integration through UI-Oriented Computing. In
ICWE, 2015.

5. F. Daniel and A. Furlan. The Interactive API (iAPI). In ComposableWeb 2013
(ICWE 2013 Workshops), pages 3–15. Springer, July 2013.

6. R. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. Ph.d. dissertation, University of California, Irvine, 2007.

