
SmartComposition: Extending Web Applications
to Multi-Screen Mashups

Michael Krug, Fabian Wiedemann, and Martin Gaedke

Technische Universität Chemnitz, Germany
{firstname.lastname}@informatik.tu-chemnitz.de

Abstract. The overall objective of UI mashups is to enable non-experts
to create rich web applications. While current approaches focus on cre-
ating UI mashups running on a single screen, we propose SmartCom-
position to enable local developers to create multi-screen mashups. For
extending existing web applications to multi-screen mashups, Smart-
Composition facilitates the Web Component technologies to enable the
hassle-free integration of new components. We support multiple types of
SmartComponents, not limiting them to user interface components. For
advanced developers we offer a template to define new kinds of Smart-
Components. SmartComposition provides an event-based communication
infrastructure which enables inter-component communication as well as
message exchange across multiple screens utilizing a WebSocket-based
synchronization service.

Keywords: Multi-screen mashup, Web Components, HTML5

1 Introduction

Within the last years, the amount of tools for creating user interface mashups (UI
mashups) significantly increased. The overall objective of UI mashups is to enable
non-experts to create rich web applications [2]. For solving complex tasks an UI
mashup consists of several components that offer a limited functionality and are
combined and aggregated. While other approaches for creating UI mashups focus
on automatic or semi-automatic mashup creation and deployment to desktop as
well as mobile screens, our approach eases the creation of UI mashups that run
distributed across several screens, so called multi-screen mashups.

The purpose of SmartComposition is to enable local developers to create
multi-screen mashups. We assume that a local developer is familiar with basic web
technologies, such as HTML5 and CSS [1]. Thus, our approach should be based
on these technologies and does not require advanced knowledge of JavaScript.
Furthermore, we want to achieve a high level of reuse of the developed components.
This requires loosely coupling and a suitable communication infrastructure to
minimize the overhead when integrating them. For enhancing existing web
applications to multi-screen mashups, SmartComposition needs to be easily
integrable.



Common mashup platforms require deploying and hosting their components
in a separate runtime environments, such as Apache Rave or Apache Shindig. We
want to eliminate this requirement and enable usage in any standard HTML5
website or application.

The rest of this paper is organized as follows: In Section 2 we present the
SmartComposition approach and provide the requested feature checklist in
Section 3. Finally, we give an overview of how our live demonstration could look
like.

2 Approach

The SmartComposition approach is based on the idea of creating mashups by
composing loosely coupled components using standard web technologies. In [3]
we proposed a component-based architecture for multi-screen web applications.
We advance the presented ideas by using the Web Components technologies for
defining and implementing SmartComponents. Our implementation uses only
client-side JavaScript. The major benefit of exploiting the proposed technologies
for creating modern widgets is that no runtime environment or portal software is
needed to host such composed mashup applications. That means, SmartCom-
ponents can be used in any HTML5 based web application. They can work as
UI as well as data or logic components. A combination of all three types is also
possible. In contrast to existing UI mashup approaches, where components are
mostly called widgets, we always use the term component. This is justified by not
limiting our component types to user-interface elements.

SmartComponents exploit a set of new W3C technologies called Web Compo-
nents, consisting of Templates, Shadow DOM, Custom Elements and HTML Im-
ports. Our framework provides a template and helper methods for defining new
SmartComponents that eases the usage of those new technologies. The first tech-
nology called Templates defines chunks of markup that is parsed by the parser,
but is inactive and not rendered. Within the <template> tags normal HTML
markup is used to describe the structure of the components static content. When
creating the SmartComponent, the template’s content is copied to an adjunct
DOM tree called Shadow DOM. By exploiting the Shadow DOM, which forms its
own scope, we ensure encapsulation and minimize the risk of conflicting styles,
names or IDs of elements. SmartComponents are new types of DOM elements
that can be defined by authors. The registration of new elements is done using
the Custom Elements standard. New SmartComponents can be easily integrated
in a website by using HTML Imports. The import statement uses the <link> tag
to load external definition files. The new custom element tag can be instantly
used in the HTML markup after importing the component’s resource file. A
SmartComponent is described in an HTML file containing different sections for
describing the layout, the styling as well as the functionality. Since we are using
Polymer as an underlying framework, the definition follows a declarative style
and supports e.g. event and data binding and advanced template functionality.



Furthermore, the SmartComposition framework provides an event-driven
communication channel using a topic-based publish/subscribe mechanism. This
enables loosely coupling. An overview of the communication infrastructure can be
seen in Figure 1. SmartComponents can use predefined methods for subscribing
to topics and publishing information. By providing a WebSocket-based syn-
chronization service, we enable developers to easily create multi-screen-capable
mashup applications. SmartComposition offers a stand-alone solution with no
dependencies and side-effects on other components. The client-side part is im-
plemented as a JavaScript object that can be included in any HTML page that
hosts SmartComponents. It works like a hook and captures all events sent by
the SmartComponents. The captured events are sent to a configured endpoint. A
Node.js WebSocket server works as a synchronization endpoint and distributes
all received events to other connected screens, where they are again published
and can be consumed by the local SmartComponents. By using the WebSocket
standard, we enable low-latency, bi-directional communication in the browser.

Fig. 1. Example mashup and a simplified overview of the communication infrastructure

To make multi-screen mashup applications more interactive, SmartCompo-
nents can be configured to be easily movable by drag-and-drop. Additionally,
SmartComponents can also be moved to other connected screens with their state
preserved. SmartComponents are stateful DOM objects and provide script inter-
faces. Thus, developers are able to influence the behavior of the used components
on runtime with standard HTML5 DOM methods. SmartComponents can be
added, removed and reconfigured at any time. By making SmartComponents
available as HTML elements, users that are familiar with HTML but do not have
knowledge in programming are also able to create mashups.



3 Checklist

Mashup Type Hybrid mashups

Component Types Data components
Logic components
UI components

Runtime Location Both Client and Server

Integration Logic Choreographed integration

Instantiation Lifecycle Short-living

Targeted End-User Local Developers

Automation Degree Manual

Liveness Level Level 4 (Dynamic Modification
of Running Mashup)

Interaction Technique Editable Example

Online User Community None

4 Planned Demonstration

The demonstration will show how we compose a mashup by using SmartCompo-
nents. We will provide a set of components that feature different functionality: e.g.
a video, translation, semantic extraction, Google maps, Google images, Twitter
and Wikipedia component. They can be UI components as well as data and logic
components. We will show how the different components are working together
and can be combined by adding them to the markup of an HTML document.
Since our framework can be edited live, we demonstrate adding, removing and re-
configurating components directly in the browser by editing the markup. To proof
the multi-device capabilities of our solution, we show that SmartComponents can
display different kinds of information synchronized on multiple screens, and that
they can even be moved between screens. For an interactive demonstration, the
audience can join the session by visiting a given URL to see the synchronization
live in a working example.

Bibliography

[1] Aghaee, S., Nowak, M., Pautasso, C.: Reusable Decision Space for Mashup
Tool Design. In: 4th ACM SIGCHI symposium on Engineering interactive
computing systems. pp. 211–220. Copenhagen, Denmark (June 2012)

[2] Chudnovskyy, O., Fischer, C., Gaedke, M., Pietschmann, S.: Inter-Widget
Communication by Demonstration in User Interface Mashups. In: Web
Engineering, LNCS, vol. 7977, pp. 502–505. Springer Berlin Heidelberg (2013)

[3] Krug, M., Wiedemann, F., Gaedke, M.: SmartComposition: A Component-
Based Approach for Creating Multi-screen Mashups. In: Web Engineering,
LNCS, vol. 8541, pp. 236–253. Springer International Publishing (2014)


	SmartComposition: Extending Web Applications to Multi-Screen Mashups

