
The Vision of an Intuitive Composition Paradigm

Florian Daniel @ ZEUS, 13-14 February 2017, USI Lugano, Switzerland

From Service- to
UI-Oriented Computing

After more than a decade since their emergence,
why are Web services and SOC still a
prerogative of programmers only?

INFORMATICA

Unplugged

Cominciare a impadronirsi delle
tecniche della programmazione

attraverso esercizi di informatica
svolti senza il computer

Teach people how to code software

“Teach” software how to enable people

compose services

Make services self-explaining and supportive

Services

Description

Discovery

Composition

SOC

Services

Description

Discovery

Composition

SOC

RESTful Web services =
XML/JSON over HTTP

stateless

SOAP Web services =
XML over SOAP over HTTP
WS-* family of specifications
stateless and stateful

Software
engineering
abstractions

Services

Description

Discovery

Composition

SOC

WADL = description of RESTful resources
WSDL = description of Web service interfaces
WSCI = description of client-server protocols
WS-CDL = description of multi-party business protocols

Oriented toward machines
Documentation still needed

Services

Description

Discovery

Composition

SOC

UDDI = Universal Description, Discovery and Integration

Failure (as public registry)

SOA World Magazine, December 18, 2005

OASIS Mailing List Archive, July 2, 2008

For human consumption!

Services

Description

Discovery

Composition

SOC

BPEL = Business Process Execution Language

Comes with exception handling, transactions,
compensations,…

Eclipse BPEL Designer

For skilled developers only!

BPMN 2.0 mapped to BPEL

For skilled developers only!

Yaoqiang BPMN Editor

Only few BPEL/BPMN engines running in practice!

http://en.wikipedia.org/wiki/List_of_BPEL_engines

Most service compositions are still coded manually

An attempt to lower the barriers to development…

Mashups = composite applications developed
starting from reusable data, application logic and/
or user interfaces typically, but not mandatorily,
sourced from the Web

F. Daniel and M. Matera. Mashups: Concepts, Models and Architectures. Springer, 2014. ISBN 978-3-642-55048-5.

Google Map Craigslist.org

Housingmaps.com

http://housingmaps.com

Mashup tools…

Yahoo! Pipes = data mashups

http://pipes.yahoo.com/pipes/ (discontinued recently)

= universal integration

F. Daniel, F. Casati, B. Benatallah and M.-C. Shan. Hosted Universal Composition: Models, Languages and Infrastructure in mashArt. ER 2009, Pages 428-443.

Integration logic

ResEval Mash = domain-specific mashups
 (research evaluation)

Figure 3: ResEval Mash in action: screen shots of the modeling canvas and the final mashup output

tribution of the Italian researchers for the Computer Science
disciplinary sector, while the second branch is used to com-
pute the impact value of UniTN’s researchers and to deter-
mine their individual percentiles, which are finally visualized
in a bar chart (clearly, we anonymized the respective data).

4. DEMONSTRATION STORYBOARD
The live demo will be presented starting from an introduc-

tion of the reference domain (i.e., research evaluation) and
the motivation behind the implementation of ResEval Mash.
A guided walk-through the tool will be presented to intro-
duce the modeling paradigm of the tool. We will compose
a few example scenarios and describe the various features
provided by the tool. After this, we will ask the audience to
try the tool and to develop their own simple research eval-
uation mashups. Finally, the platform architecture will be
presented to highlight the various aspects of the tool.

A screencast and a continuously updated prototype of Re-
sEval Mash is available at http://open.reseval.org/.

5. EVALUATIONANDLESSONS LEARNED
ResEval Mash stems from the actual needs in our univer-

sity and from our own needs in term of research evaluation.
It also results from the observation that in general compo-
sition technologies failed to a large extent to strike the right
balance between ease of use and expressive power. They
define seemingly useful abstractions and tools, but in the
end domain experts are still not able to understand and use
them. What we have pursued in the development of ResEval
Mash, in essence, is to constrain the language to the domain
and to provide a domain-specific notation so that it becomes
easier to use and in particular does not require users to deal
with one of the most complex aspects of process modeling
(at least for end users), that of data mappings.

We have performed a user study of ResEval Mash with
10 users (5 with and 5 without IT skills and with differ-
ent domain expertise). Participants were asked to fill in a
questionnaire about their computing and research evalua-

tion skills before the test, to watch a video tutorial about
ResEval Mash, and to use the tool, while being filmed.

The comparison between the two groups of users high-
lighted good performance independently of participants’ com-
puting skills. The request for higher training emerging from
a few less expert users appeared to be rather linked to a
weaker domain knowledge than to their computing capa-
bilities. A major finding is related to the ease with which
our sample understood that components had to be linked
together so that information could flow between different
services. This is a well-acknowledged problem evinced in
several user studies of EUD tools (e.g., [6]), which did not
occur at all in the current study. To a large extent, this re-
sult can be achieved thanks to the fact that ResEval Mash
relieves users from the definition of data mappings.

Acknowledgment: This work was supported by EU project
OMELETTE (contract no. 257635).

6. REFERENCES
[1] M. F. Costabile, D. Fogli, G. Fresta, P. Mussio, and

A. Piccinno. Software environments for end-user
development and tailoring. PsychNology Journal,
2(1):99–122, 2004.

[2] F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan.
Hosted Universal Composition: Models, Languages and
Infrastructure in mashArt. In ER’09, pages 428–443.

[3] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng,
and L. Yan. From People to Services to UI: Distributed
Orchestration of User Interfaces. In BPM’10, pages
310–326.

[4] R. France and B. Rumpe. Domain specific modeling.
Software and Systems Modeling, 4:1–3, 2005.

[5] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, 2005.

[6] A. Namoun, T. Nestler, and A. De Angeli. Service
Composition for Non Programmers: Prospects,
Problems, and Design Recommendations. In
Proceedings of ECOWS, pages 123–130. IEEE, 2010.

F. Daniel, M. Imran, S. Soi, A. De Angeli, C. R. Wilkinson, F. Casati and M. Marchese. Developing Mashup Tools for End-Users: On the Importance of the
Application Domain. International Journal of Next-Generation Computing 3(2), July 2012.

Yahoo! Pipes
modeling canvas

Newly added component

Baya recommendation panel

Recommended patterns

Details about selected pattern

Component
toolbar

= assisted mashup development

S. Roy Chowdhury, F. Daniel and F. Casati. Recommendation and Weaving of Reusable Mashup Model Patterns for Assisted Development. ACM Transactions on
Internet Technology 14(2-3), Article 21, 2014.

User study: comparison of development with/without Baya

21:16 S. Roy Chowdhury et al.

Fig. 6. User study of Baya in Yahoo! Pipes with 30 participants split into a control and a test group.

control group, the recommendation panel was disabled. After the development task,
participants were asked to fill out an online questionnaire evaluating their satisfac-
tion with their development experience (we used a 5-point Likert scale ranging from
strongly agree to strongly disagree to collect feedback). In three days (from May 16 to
May 18, 2012) and with a reward of $1 for developing the pipe and filling the question-
naire and $0.10 for additional free feedback, we could attract 32 participants, out of
which 30 provided useful data (15 in each group). Participants were required to pass a
qualification test with questions about Yahoo! Pipes in order to prevent junk answers.

The data collected are illustrated in Figure 6. In order to accept or reject our hy-
potheses, we used Welch’s t-test for equal sample sizes and unequal variance.

—H1. Figure 6(a) shows the collected development times, with µdev,ctrl = 1027.1s and
µdev,test = 384.9s. The null hypothesis is µdev,test − µdev,ctrl = 0, that is, there is no
significant difference between the two development times. The p-value for this null
hypothesis is 0.00045, which is very small. Hence, we reject the null hypothesis,
proving that Baya speeds up mashup development in Yahoo! Pipes.

—H2. Figure 6(b) shows the number of interactions; µint,ctrl = 258.9 and µint,test = 74.3.
The null hypothesis is µint,text−µint,ctrl = 0. The p-value for this hypothesis is 0.00009,
again very small, thus we have to reject the null hypothesis. Hence, Baya requires
fewer user interactions in Yahoo! Pipes.

—H3. Figure 6(c) shows the thinking times; µth,ctrl = 4.0s and µth,test = 5.5s, that is,
the control group has lower thinking time (as opposed to H3). The null hypothesis is
µth,test − µth,ctrl = 0. The p-value for this hypothesis was 0.00209, once again a very
small probability. Hence, Baya increases thinking time in Yahoo! Pipes.

The feedback collected via the questionnaire further reinforced these conclusions: 73%
of the control group agreed that understanding which module to use in their pipe
took most of their time, whereas 100% agreed (27% strongly) that assigning the right
parameter values to a module took most of their design time. Moreover, 73% of the
control group agreed that some form of automated assistance would have helped them
in their task. Out of the test group subjects, 80% strongly agreed that the interactive
recommendations saved time, whereas 73% agreed that the automatic weaving feature
did so (27% expressed neutral feedback). As for the scenario, 80% of the control group
and 73% of the test group strongly agreed that the scenario was nontrivial, a property
we considered necessary for the collection of meaningful data.

6.2. Baya for Apache Rave
Apache Rave (http://rave.apache.org/) is an open-source mashup environment for
OpenSocial and W3C UI widgets. It follows a relatively simple and live development

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

using

Ingredients Toolbar

displays a searchable list of
available Web APIs.

Text Field

allows to edit the mashup
description.

API Dock

shows the list of APIs used in the
mashup.

Widgets

are resizable and can be moved around.

Web APIs

are draggable and represented
by an icon.

Visual Field

renders the mashup output while it is
being edited.

Fig. 1. NaturalMash environment: users type the description of the mashup in the text field and immediately see the output in the visual field. The output
contains interactive widgets that can be resized and relocated. The ingredients toolbar helps with API discovery, while the dock gives a summary of the APIs
used in the current mashup. Web APIs are abstracted away from the technologies they use and are represented as icon.

The four components of the environment are meant to
be used together as follows. The ingredients toolbar gives a
searchable overview of the available APIs that are available
to be mashed up. Users can drag-and-drop APIs from the
ingredients toolbar into the visual field to build their desired
mashups. Alternatively, they can use the text field to describe
the mashup using natural language. The text field is equipped
with advanced features like autocomplete suggesting matching
API descriptions as the user types text fragments. The visual
field also enables the use of PbD: once users start interacting
with the widgets, some suggestions on how to describe their
interaction are proposed in the text field. The interactive API
dock allows users to highlight or remove APIs.

NaturalMash is a WYSIWYG environment based on the
live programming paradigm [18], [19], in which the ed-
it/compile/run development lifecycle is fully automated by
the system. As a result, users can more easily bridge the
gulf of evaluation (the degree of difficulty of assessing and
understanding the state of the system [20]). This in turn leads
towards an improved learning experience [21].

NaturalMash combines three techniques of end-user pro-
gramming as follows. Natural language programing is enabled
through a Controlled Natural Language (CNL) — a subset
of a natural language (e.g., English) restricted in terms of
vocabulary and grammar. The visual field provides the visible
and live output of the mashup being created and facilitates
natural language programming through visual demonstration
and interactions with widgets (e.g., clicking a map widget adds
the corresponding natural language description to the text field,
being, for instance, “when the map is clicked”). From the ex-
pressive power point of view, the NaturalMash CNL empowers
users to describe relatively complex process orchestration and
data integration logic as well as the composition of widgets

(all at a very abstract level), whereas the visual field provides a
direct way to manipulate the user interface (WYSIWYG), and
partially the application logic (through PbD), of the mashup
being created. As a result, the user interface becomes much
more intuitive because it supports both direct manipulation
(visual field) and descriptive representation (text field) of the
mashup being created.

Overall, we expect our design to empower non-professional
users (e.g., non-programmers) to create useful mashups with
minimal prior knowledge.

III. NATURALMASH CONTROLLED NATURAL LANGUAGE

Natural language programming in NaturalMash is enabled
by a CNL that is an abstract, executable language for
modeling the presentation integration, process integration,
and data integration layers of mashups. For example,
Listing 1 conforms to the NaturalMash CNL and describes
an enhanced music video search mashup that employs
Last.fm (http://www.last.fm/api) to first search for a song
and then uses the results to accurately search for the
corresponding music videos of the song in YouTube
(https://developers.google.com/youtube/).

Find songs titled mashup. When an item is selected,

search YouTube videos about title.

Listing 1. An enhanced music video search mashup. “mashup” originally
refers to a type of song created by mixing two or more songs

The underlying implementation of the CNL accommodates
an abstract component model [22] that: (i) gives a unified
technology-neutral description of Web APIs, and (ii) models
them in an abstract textual form (natural language descrip-
tion). The abstract component model distinguishes two types

112

NaturalMash = natural language mashups

Saeed Aghaee, Cesare Pautasso, Antonella De Angeli: Natural End-User Development of Web Mashups. VL/HCC 2013: 111-118

= puzzle-like paradigm

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y. (2009).
Scratch: programming for all. Communications of the ACM, 52(11), 60-67.

Lessons learned about non-programmers

They don’t know what services are
They don’t know what widgets are
They don’t know what data mappings are
They don’t care about knowing that
They already struggle with their own business

What they do everyday is…
browsing the Web and operating UIs

http://inventionmachine.com/the-Invention-Machine-Blog/bid/79363/The-Deep-Web-Semantic-Search-Takes-Innovation-to-New-Depths

90 % of
functionality

50 % of
functionality ??

Let’s try to interpret the UI as API

The Interactive API (iAPI) 9

Data

Logic

UI

Logic

Data

UI

Data

UI

Logic

(b) Extracting data (c) Extracting logic

Data

Logic

UI

(a) Operating UI (d) Cloning UI

Fig. 3. The four core uses cases of iAPIs for UI-oriented computing. White blocks
correspond to what is reused, gray blocks are neglected.

(d) Cloning UI : The most advanced use case is cloning a complete piece of
UI, along with its underlying application logic and data. This means re-
constructing the UI of the iAPI locally and connecting them to the remote
iAPI’s logic and data. The use case copies ui and makes use of all other
features, e.g., by dragging/dropping the piece of UI into a new web page.

These four use cases represent a unified and principled solution to the devel-
opment practices described in the introduction, which otherwise would require
mastering a wide set of different component technologies and protocols.

3.3 Implementation Options

Although iAPIs are apparently complex software artifacts themselves, their im-
plementation can be kept relatively simple. Recalling the structure of iAPIs, i.e.,
iapi = ⟨ui, api, Ctr⟩ with api = ⟨do,O,E⟩, it is important to note that the ui
comes essentially for free, in that it is simply a part of a web application’s UI,
which would be there anyway, with or without the iAPI. Similarly, the function
do can be provided once for all via a dedicated UI wrapper that enables emu-
lating user interactions with ui (similar to Selenium, http://seleniumhq.org,
but with advanced iAPI support). Only the operations O and the events E re-
quire an iAPI-specific implementation, while the graphical controls Ctr can be
automatically generated out of their definitions, given a respective rendering
convention. As for the operations and events, we identify three options:

– Ad hoc implementation : It is always possible to implement dedicated
operations and events via custom JavaScript code included in web pages.
Each iAPI would have its own implementation.

– iAPI annotations: If we carefully examined how these implementations
look like, we would easily identify recurrent patterns for data extraction
from HTML markup, fetching data from a remote source, or invoking remote
web services. Instead of implementing these functionalities imperatively in
JavaScript, it is possible to factor out the repetitive code into an independent
code library and to configure it via declarative annotations of the HTML
markup of ui. For instance, data extraction can be supported via micro-
formats, while logic extraction may require new annotation elements.

Use cases

Processes/
algorithms

Data
sources

Web
services

UI
widgets

User
interactions Tables, lists Forms UI elements

Data
sources

Tables, lists

iAPI (interactive API) annotation format

Example

External annotation of data sources

Web
services

Forms

UI
widgets

UI elements

UI-oriented computing middleware

iAPI editor
(injected script)

The Web

i

Browser window

iAPI engine
(background script)

iAPI engine
(content script)

Target page P2

<ul
class=
"iapi">
…

<table class="iapi
source:P1">
…
</table>

Browser extension logo

Graphical iAPI controls

iAPI annotation

iAPI annotation

HTML
augmenter

Loader

HTML 5
messages

loads resources

interprets annotation

injects content

Event
handlers

react to events

HTML
augmenter

iAPI parser

Local
storage

Lifecyle
manager

Annotation parsers

iAPI parser

RSS parsercCard parser
JSON parser

Annotation
augmenter

injects controls and templates

reads/writes annotations

manages data

HTML
templ.
HTML
templ.
HTML
templ.

Storage manager

Chrome
messages

manages icon

uses

RSS

XML

It’s all just an idea, but if it worked…

…there would be some interesting benefits

The deployment of iAPIs is contextual to the
deployment of their host application

UI API

render generate

The documentation of iAPIs comes for free: the UI
tells everything; no need for descriptors or IDLs.

vs.

SOAP, REST, WSDL,
WADL, WSCI, WS-CDL

Searching iAPIs does not require any new infrastructure
or query paradigm: simple Web search does the job

Provider

Consumer Broker

(4) Usage (1) Publication

(2) Search

(3) Description

vs.

Composing iAPIs is as intuitive as browsing the Web;
no need for programming skills.

Point and click

Drag and drop

Record

Re-play
Copy and paste

By example

Is there a mapping? Which is best?

Deep Web

APIs

Web
services

RPC
SOAP

REST

SOC

Surface Web

Tables

Buttons

Widgets

Forms

Charts
UIC

Is there
one?

The challenges

Which paradigms?

How to
simplify?

Which abstractions?

And lots more…

As said, it’s all still an experiment. But…

…let’s try to make composition more accessible.

You too!

